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Project Overview

= |tis hypothesized that the strength of a nonlinearity (SNL) in a jointed
system can be predicted by quantifying the magnitude and uniformity of
contact pressure within an interface and by assessing the modal
excitation of an interface.

= Numerical Methods:

Using Abaqus, we calculated a
variety of statistics regarding
contact pressure and modal strain
to utilize in developing a metric to
predict strength of nonlinearity.
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Project Overview

=  Experimental Methods:

We obtained time response data
for many beam configurations.

= Analysis:

We developed a definition for
SNL based on change in damping
ratio and change in frequency.
Using machine learning, we
assessed the importance of

, _ -0.01 various statistics in predicting
Change in Damping 0 -0.015 . . .

Change in Frequency SNL and finalized a metric.
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Configurations — Brake-Reul} Beam

Nominal BRB

u BRB | e O s O |

. Modified Stiffness (SBRB)
= Spring (SBRB) T . SR |

Modified Length (LBRB)

= Long (LBRB) — S —
T =

= Hertzian Contact (HZ)

= Reverse Pad Contact (RPD)

= Large Pad Contact (LPD)

Small Pad Contact (SPD)
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Configurations — C-Beam

= CBM (also known as the S4 or Sandwich beam)
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Configurations — 4-Bolt Beam

L {

(4-bolt Short Opposite-sides)

= 4VO0
(4-bolt V-shape Outside)
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Numerical Methodology

= To develop the metric, we sought easy-to-access data from an FEA
model: modal strain and contact pressure.

= A nonlinear frictionless interface implicit solver was used to determine
contact pressure.

= Alinearized eigen analysis was used to find mode shapes and strain.

= Various statistics were calculated based on the data:
= Mean (Contact Pressure and Strain)
= Max (Contact Pressure and Strain)
= Standard Deviation (Contact Pressure and Strain)
= Skew (Contact Pressure and Strain)
=  Kurtosis (Contact Pressure and Strain)
= Contact Area
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Experimental Methodology

Impact Testing

Bandpass Filtering and Hilbert Transform
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Experimental Methodology

= CBM = 4S0
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Experimental Methodology

= |mpact hammer testing using free-free boundary condition
= Bolt torques range from 5Nm = 20Nm

= What is the effect of changing contact pressure within beam
configurations?

= |mpact Levels ranging from 60N to 900N
= What is the effect of modal coupling?
= How do we normalize force?

= Standardize by max mode shape
0.4
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Defining Strength of Nonlinearity (SNL)

= Magnitude of shift in natural frequency and damping as
the response amplitude of a structure is varied between
two fixed bounds.

" SNL=a="+fN
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Defining SNL

N =

Aw Aw
SNL4 = ZO*X +(AC)2 + 20*? +(A()2

0.2

-0.01

Change in Damping 0 -0.015

Change in Frequency 15
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Defining SNL: Perturbations Approach

Based off of a mass-spring-damper system
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Defining SNL: Perturbations Approach
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Machine Learning

= Correlation of parameters to SNL and frequency-only-
based SNL by visual inspection and ANOVA

= 70% of variance explained by 5 variables: Mean Strain, Standard
Deviation Strain, Standard Deviation Contact Pressure, Contact Area,
Skew Strain
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Machine Learning

" SNL =.065802 + 1.7405MeanE — 1.3022STDE — 5.7476 * 10"°STDCP — 41.301AreaCP

+.041298SkewE, p-value=1.17e-10, R* = .696

0.5

=  MATLAB’s built-in functions fitIm,
stepwiselm, and step were utilized to
create a linear regression model using
the various statistics

0.4

0.2

Adjusted SNL

= stepwiselm automatically tests the
importance of each statistic to create
the optimal metric

01f

Added variable plot for whole model
T T T T T

*  Adjusted data
Fit: y=34.6506"x
95% conf. bounds

= step takes an existing model and
checks whether additional terms
should be added or existing terms
should be removed

Whole Model
Parameters
(R"2=0.696, p-

value=1.17e-10)

= fitIm fits a model using the
parameters specified

MeanE
STDE
STDCP
AreaCP
SkewE
(KurtosisE)

Adjusted whole model 1073

p-value Frequency

Parameters

(R"2=0.833,p-

value=1.49e-

15)
6.5816e-08 MeanE 6.6878e-12
1.499e-05 STDE 2.8118e-10
4.1232e-05 SkewE 2.6391e-06
0.00032329 STDCP 9.671e-06
0.01428 KurtosisE 0.000461
(0.09601) AreaCP .026855
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Conclusions

= We were not able to produce a metric that could accurately
predict the SNL metric using only contact pressure and modal
strain. A future metric could possibly be determined if
additional interface properties were also included.

= We were able to identify the key variables that explain
variance in our SNL metric
= Strain: Mean, Standard Deviation and Skew
= Contact Pressure: Standard Deviation and Area

= We were able to identify areas of improvement for future
research
= Using modal acceleration instead of absolute acceleration
= Better understand how force levels activate modal coupling
= Implement genetic algorithms for model predictions

= Use surface properties to explain damping variance
20
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